In two and three dimensions, this study is focused on the numerical analysis of an eigenproblem associated with a fluid-structure model for sloshing and elasto-acoustic vibration. We use a displacement-Herrmann pressure formulation for the solid, while for the fluid, a pure displacement formulation is considered. Under this approach we propose a non conforming locking-free method based on classic finite elements to approximate the natural frequencies (of the eigenmodes) of the coupled system. Employing the theory for non-compact operators we prove convergence and error estimates. Also we propose an a posteriori error estimator for this coupled problem which is shown to be efficient and reliable. All the presented theory is contrasted with a set of numerical tests in 2D and 3D.


翻译:本研究在二维和三维空间中,针对与流体-结构相互作用模型相关的特征值问题进行数值分析,该模型适用于晃动及弹性声学振动问题。固体部分采用位移-Herrmann压力公式,流体部分则采用纯位移公式。基于此框架,我们提出一种基于经典有限元的非协调无闭锁方法,用于近似耦合系统的特征频率(对应特征模态)。运用非紧算子理论,我们证明了方法的收敛性并给出了误差估计。同时,针对该耦合问题提出了一个后验误差估计子,并验证了其有效性与可靠性。所有理论结果均通过二维与三维数值实验进行了验证。

0
下载
关闭预览

相关内容

【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
【CVPR2021】CausalVAE: 引入因果结构的解耦表示学习
专知会员服务
37+阅读 · 2021年3月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
VIP会员
相关VIP内容
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
【CVPR2021】CausalVAE: 引入因果结构的解耦表示学习
专知会员服务
37+阅读 · 2021年3月28日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员