We propose Bayesian nonparametric Weibull delegate racing (WDR) to explicitly model surviving under competing events and to interpret how the covariates accelerate or decelerate the event times. WDR explains non-monotonic covariate effects by racing a potentially infinite number of sub-events, relaxing the ubiquitous proportional-hazards assumption which may be too restrictive. WDR can handle different types of censoring and missing event times or types. For inference, we develop a Gibbs-sampler-based MCMC algorithm along with a maximum a posteriori estimation for big data applications. We use synthetic data analysis to demonstrate the flexibility and parsimonious nonlinearity of WDR. We also use a data set of time to loan payoff and default from Prosper.com to showcase the interpretability.
翻译:我们建议巴伊西亚非参数 Weibull 代表赛(WDR) 明确模拟在相竞事件下生存的模型,并解释共变加速或减慢事件时间的方式。 WDR 解释非单调共变效应,通过潜在无限的次活动进行比赛,放松可能限制性过强的无处不在的成比例危害假设。WIDR 能够处理不同类型的审查以及失踪事件的时间或类型。 推论,我们开发了一个基于 Gibbs-ampler 的MCMC 算法,同时对大数据应用进行最高事后估计。我们使用合成数据分析来展示WDR的灵活性和相似的非线性。 我们还使用一组数据来从Prosper出钱偿还和违约。com 来展示可解释性。