In the domain of software engineering, our efforts as researchers to advise industry on which software practices might be applied most effectively are limited by our lack of evidence based information about the relationships between context and practice efficacy. In order to accumulate such evidence, a model for context is required. We are in the exploratory stage of evolving a model for context for situated software practices. In this paper, we overview the evolution of our proposed model. Our analysis has exposed a lack of clarity in the meanings of terms reported in the literature. Our base model dimensions are People, Place, Product and Process. Our contributions are a deepening of our understanding of how to scope contextual factors when considering software initiatives and the proposal of an initial theoretical construct for context. Study limitations relate to a possible subjectivity in the analysis and a restricted evaluation base. In the next stage in the research, we will collaborate with academics and practitioners to formally refine the model.


翻译:在软件工程领域,我们作为研究人员向产业界提供咨询意见,说明哪些软件做法可以最有效地应用,但由于缺乏关于背景与实践效果之间关系的证据信息,我们的努力受到限制。为了积累这种证据,需要一种背景模型。我们正在探索阶段,为定位软件做法开发一种背景模型。我们在本文件中概述了我们拟议模型的演变情况。我们的分析揭示了文献中所报告的术语含义不够明确。我们的基本模型层面是人、地点、产品和过程。我们的贡献是加深了我们对在考虑软件倡议和初步背景理论构建建议时如何涵盖背景因素的理解。研究局限性涉及分析中可能的主观性和有限的评估基础。在下一阶段的研究中,我们将与学者和从业者合作,正式完善模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Proper Scoring Rules for Missing Value Imputation
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月4日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员