The design and implementation of error correcting codes has long been informed by two fundamental results: Shannon's 1948 capacity theorem, which established that long codes use noisy channels most efficiently; and Berlekamp, McEliece, and Van Tilborg's 1978 theorem on the NP-hardness of decoding linear codes. These results shifted focus away from creating code-independent decoders, but recent low-latency communication applications necessitate relatively short codes, providing motivation to reconsider the development of universal decoders. We introduce a scheme for employing binarized symbol soft information within Guessing Random Additive Noise Decoding, a universal hard detection decoder. We incorporate code-book-independent quantization of soft information to indicate demodulated symbols to be reliable or unreliable. We introduce two decoding algorithms: one identifies a Maximum Likelihood (ML) decoding; the other either reports an ML decoding or an error. For random code-books, we present error exponents and asymptotic complexity, and show benefits over hard detection. As empirical illustrations, we compare performance with majority logic decoding of Reed-Muller codes, with Berlekamp-Massey decoding of Bose-Chaudhuri-Hocquenghem codes, and establish the desirable performance of Random Linear Codes, which require a universal decoder and offer a broader palette of code sizes and rates than traditional codes.


翻译:长期以来,错误校正代码的设计和实施一直以两个基本结果为依据:香农的1948年能力理论,其中确定长代码使用噪音频道的效率最高;Berlekamp、McEliece和Van Tilborg1978年关于脱码线性代码NP-硬度的理论。这些结果转移了重点,不再创建自编码解码器,但最近的低延迟通信应用需要相对较短的代码,为重新考虑通用解码器的发展提供了动力。我们引入了一种在猜测随机添加噪音解码时使用二进化符号软信息的办法,这是一种更宽广的硬检测解码器。我们引入了软信息的代码的编码独立化代码,以表明解码符号是否可靠或不可靠。我们引入了两种解码算法:一种是确定最大易码解码(ML)解码;另一种是报告ML解码或错误。对于随机的代码,我们给出了错误,我们给出了错误的罗度和隐性复杂度,并展示了硬性检测的好处。作为实验性解码的解码,我们将业绩与自动解算法规则与多数比了。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
9+阅读 · 2019年11月15日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月29日
Arxiv
0+阅读 · 2021年6月29日
Privacy Budget Scheduling
Arxiv
0+阅读 · 2021年6月29日
Coding for Polymer-Based Data Storage
Arxiv
0+阅读 · 2021年6月28日
Arxiv
0+阅读 · 2021年6月28日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
9+阅读 · 2019年11月15日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员