The goal of building intelligent dialogue systems has largely been \textit{separately} pursued under two paradigms: task-oriented dialogue (TOD) systems, which perform goal-oriented functions, and open-domain dialogue (ODD) systems, which focus on non-goal-oriented chitchat. The two dialogue modes can potentially be intertwined together seamlessly in the same conversation, as easily done by a friendly human assistant. Such ability is desirable in conversational agents, as the integration makes them more accessible and useful. Our paper addresses this problem of fusing TODs and ODDs in multi-turn dialogues. Based on the popular TOD dataset MultiWOZ, we build a new dataset FusedChat, by rewriting the existing TOD turns and adding new ODD turns. This procedure constructs conversation sessions containing exchanges from both dialogue modes. It features inter-mode contextual dependency, i.e., the dialogue turns from the two modes depend on each other. Rich dependency patterns including co-reference and ellipsis are features. The new dataset, with 60k new human-written ODD turns and 5k re-written TOD turns, offers a benchmark to test a dialogue model's ability to perform inter-mode conversations. This is a more challenging task since the model has to determine the appropriate dialogue mode and generate the response based on the inter-mode context. But such models would better mimic human-level conversation capabilities. We evaluate baseline models on this task, including \textit{classification-based} two-stage models and \textit{two-in-one} fused models. We publicly release FusedChat and the baselines to propel future work on inter-mode dialogue systems https://github.com/tomyoung903/FusedChat.


翻译:建立智能对话系统的目标主要是在两种模式下进行\ textit{ sepate} : 以任务为导向的对话(TOD) 系统,这些系统执行面向目标的功能,以及开放域对话(ODD) 系统,这些系统侧重于非目标导向的通道。两种对话模式有可能在同一对话中天天天地交织在一起,就像友好的人类助理很容易做到的那样。这种能力在对话媒介中是可取的,因为整合使它们更容易获得和有用。我们的文件处理的是多点对话中使用TOD和ODD(TOD) 的问题。根据流行的TOD 数据系统多点WoZ,我们通过重写现有的TOD 旋转和添加新的 ODDT 旋转(ODD) 系统来建立一个新的数据集。 两种对话模式, 包括新的 ODDD 旋转和 5k 变换未来对话模式, 使得这种对话能够进行更具有挑战性的工作模式。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年9月19日
六篇 EMNLP 2019【图神经网络(GNN)+NLP】相关论文
专知会员服务
72+阅读 · 2019年11月3日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Towards Topic-Guided Conversational Recommender System
Arxiv
14+阅读 · 2020年1月27日
Neural Approaches to Conversational AI
Arxiv
8+阅读 · 2018年12月13日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员