Stereo video super-resolution (SVSR) aims to enhance the spatial resolution of the low-resolution video by reconstructing the high-resolution video. The key challenges in SVSR are preserving the stereo-consistency and temporal-consistency, without which viewers may experience 3D fatigue. There are several notable works on stereoscopic image super-resolution, but there is little research on stereo video super-resolution. In this paper, we propose a novel Transformer-based model for SVSR, namely Trans-SVSR. Trans-SVSR comprises two key novel components: a spatio-temporal convolutional self-attention layer and an optical flow-based feed-forward layer that discovers the correlation across different video frames and aligns the features. The parallax attention mechanism (PAM) that uses the cross-view information to consider the significant disparities is used to fuse the stereo views. Due to the lack of a benchmark dataset suitable for the SVSR task, we collected a new stereoscopic video dataset, SVSR-Set, containing 71 full high-definition (HD) stereo videos captured using a professional stereo camera. Extensive experiments on the collected dataset, along with two other datasets, demonstrate that the Trans-SVSR can achieve competitive performance compared to the state-of-the-art methods. Project code and additional results are available at https://github.com/H-deep/Trans-SVSR/
翻译:高分辨率视频超分辨率(SVSR)的目的是通过重建高分辨率视频,加强低分辨率视频的空间分辨率。SVSR的主要挑战在于保持立体一致性和时间一致性,没有这种一致性和时间一致性,观众可能会经历3D疲劳。立体图像超分辨率(SVSR)有好几项值得注意的作品,但关于立体视频超分辨率(SVSR)的研究很少。在本文中,我们为SVSR提议了一个新型的基于变异器的模型,即Trans-SVSR。 Trans-SVSR由两个关键的新颖构件组成:一个Spatio-时间同步自省自留层和一个基于光学流向向前层,在不同的视频框架中发现相关关系,并调整这些特征。使用交叉图像信息来考虑重大差异的超分辨率。由于缺乏适合SVVSR任务的基准数据集,我们收集了一个新的立体图像数据集,SVSR-Set-Set-Set,包含71个完整的动态流向前向前传输的测试S-ROS(SD),在可采集的高级测试中可采集的其他数据中,可获取的可获取的视频/跨视频数据。