Introduction: The aim of our retrospective study was to quantify the impact of Covid-19 on the temporal distribution of Emergency Medical Services (EMS) demand in Travis County, Austin, Texas and propose a robust model to forecast Covid-19 EMS incidents. Methods: We analyzed the temporal distribution of EMS calls in the Austin-Travis County area between January 1st, 2019 and December 31st, 2020. Change point detection was performed to identify critical dates marking changes in EMS call distributions and time series regression was applied for forecasting Covid-19 EMS incidents. Results: Two critical dates marked the impact of Covid-19 on the distribution of EMS calls: March 17th, when the daily number of non-pandemic EMS incidents dropped significantly, and May 13th, by which the daily number of EMS calls climbed back to 75% of the number in pre-Covid-19 time. New daily count of the hospitalization of Covid-19 patients alone proves a powerful predictor of the number of pandemic EMS calls, with an r2 value equal to 0.85. In particular, for every 2.5 cases where EMS takes a Covid-19 patient to a hospital, 1 person is admitted. Conclusion: The mean daily number of non-pandemic EMS demand was significantly less than the period prior to Covid-19 pandemic. The number of EMS calls for Covid-19 symptoms can be predicted from the daily new hospitalization of Covid-19 patients. These findings may be of interest to EMS departments as they plan for future pandemics, including the ability to predict pandemic-related calls in an effort to adjust a targeted response.


翻译:我们的回顾性研究的目的是量化Covid-19在得克萨斯州特拉维斯州特拉维斯州紧急医疗服务需求(EMS)临时分布的影响,并提出一个强有力的模型来预测Covid-19紧急医疗服务事故。方法:我们分析了奥斯汀-特拉维斯州地区紧急医疗服务电话在2019年1月1日到2020年12月31日之间的临时分布。进行了改变点检测,以确定紧急医疗服务电话分配和时间序列回归的关键日期,以预测Covid-19紧急医疗服务事件。结果:两个关键日期标志着Covid-19对紧急医疗服务需求分布的影响:3月17日,当时非大规模医疗服务事件的每日数量大幅下降,5月13日,根据这种方法,紧急医疗服务电话在奥斯汀-特拉维斯州地区的时间在奥斯汀-特拉维斯州之前的每日数量将回升至75%。仅Covid-19病人住院的新每日数量就证明了与流行病相关需求的强烈预测值,r2值相当于0.85。特别是,每2.5个病例中,EMS-19患者的住院治疗能力都比Eovid-19医院的日常需求低。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
(Un)Masked COVID-19 Trends from Social Media
Arxiv
0+阅读 · 2021年7月9日
Arxiv
0+阅读 · 2021年7月9日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员