This paper employs switching-algebraic techniques for the calculation of a fundamental index of voting powers, namely, the total Banzhaf power. This calculation involves two distinct operations: (a) Boolean differencing or differentiation, and (b) computation of the weight (the number of true vectors or minterms) of a switching function. Both operations can be considerably simplified and facilitated if the pertinent switching function is symmetric or it is expressed in a disjoint sum-of-products form. We provide a tutorial exposition on how to implement these two operations, with a stress on situations in which partial symmetry is observed among certain subsets of a set of arguments. We introduce novel Boolean-based symmetry-aware techniques for computing the Banzhaf index by way of two prominent voting systems. These are scalar systems involving six variables and nine variables, respectively. The paper is a part of our ongoing effort for transforming the methodologies and concepts of voting systems to the switching-algebraic domain, and subsequently utilizing switching-algebraic tools in the calculation of pertinent quantities in voting theory.
翻译:本文使用开关- 代数技术来计算基本投票权指数,即班扎夫电力总量,这一计算涉及两种不同的操作:(a) 布尔特的差别或区别,以及(b) 计算一个开关函数的重量(真正的矢量或分钟数),如果相关的开关功能是对称的,或以不连接的产品总和形式表示,这两种操作都可以大大简化和便利。我们就如何执行这两个操作提供了指导性说明,强调在一组参数的某些子集中观察到部分对称的情况。我们采用新的布尔基对称法技术,通过两个突出的投票系统计算班扎夫指数,这些是分别涉及六个变量和九个变量的缩略系统。本文是我们正在进行的努力的一部分,目的是将投票系统的方法和概念转换为开关- 奥尔格域,并随后在计算投票理论中的相关数量时使用开关- 。