We develop a prior probability model for temporal Poisson process intensities through structured mixtures of Erlang densities with common scale parameter, mixing on the integer shape parameters. The mixture weights are constructed through increments of a cumulative intensity function which is modeled nonparametrically with a gamma process prior. Such model specification provides a novel extension of Erlang mixtures for density estimation to the intensity estimation setting. The prior model structure supports general shapes for the point process intensity function, and it also enables effective handling of the Poisson process likelihood normalizing term resulting in efficient posterior simulation. The Erlang mixture modeling approach is further elaborated to develop an inference method for spatial Poisson processes. The methodology is examined relative to existing Bayesian nonparametric modeling approaches, including empirical comparison with Gaussian process prior based models, and is illustrated with synthetic and real data examples.
翻译:我们开发了一种时间 Poisson 工艺强度的先前概率模型,通过Erlang 密度与共同比例参数的结构化混合物,混合在整形参数上。混合物的重量是通过累积强度函数的增量构建的,这种累积强度函数的增量是非对称的,与之前的伽马进程是建模的。这种模型规格提供了Errang 混合物密度估计与密度估计设置之间的新扩展。先前的模型结构支持点处理过程强度函数的一般形状,也能够有效地处理Poisson 工艺的正常化期,从而产生高效的后表模拟。Errang 混合物模型法进一步得到完善,为空间 Poisson 工艺开发一种推论方法。该方法与现有的Bayesian非参数模型模型法相对,包括与Gaussian 先前的模型进行实证比较,并用合成和真实的数据实例加以说明。