News reports have suggested that darker skin tone causes an increase in face recognition errors. The Fitzpatrick scale is widely used in dermatology to classify sensitivity to sun exposure and skin tone. In this paper, we analyze a set of manual Fitzpatrick skin type assignments and also employ the individual typology angle to automatically estimate the skin tone from face images. The set of manual skin tone rating experiments shows that there are inconsistencies between human raters that are difficult to eliminate. Efforts to automate skin tone rating suggest that it is particularly challenging on images collected without a calibration object in the scene. However, after the color-correction, the level of agreement between automated and manual approaches is found to be 96% or better for the MORPH images. To our knowledge, this is the first work to: (a) examine the consistency of manual skin tone ratings across observers, (b) document that there is substantial variation in the rating of the same image by different observers even when exemplar images are given for guidance and all images are color-corrected, and (c) compare manual versus automated skin tone ratings.
翻译:新闻报道显示, 更暗的皮肤色调导致面部识别错误的增加。 Fitzpatrick 比例表被广泛用于皮肤学, 用于对太阳暴露和皮肤色调的敏感度进行分类。 在本文中, 我们分析一套手工的Fitzpatrick皮肤类型任务, 并使用个体类型角度从脸部图像中自动估计皮肤色调。 一组人工皮肤色调评级实验显示, 人类定级器之间有不一致之处, 难以消除。 努力将皮肤色调评级自动化表明, 在现场没有校准对象的情况下收集的图像尤其具有挑战性。 但是, 在色校校后, 自动和手动方法之间的一致程度被发现为 MORPH 图像的96 % 或更好 。 据我们所知, 这是第一件工作是:(a) 检查观察者手动皮肤色调评级的一致性, (b) 文件显示, 不同观察者对同一图像的评级存在很大的差异, 即使为指导提供示例图像, 并且所有图像都被颜色校正, 以及 (c) 将手动与自动的皮肤色调评级进行比较。