News reports have suggested that darker skin tone causes an increase in face recognition errors. The Fitzpatrick scale is widely used in dermatology to classify sensitivity to sun exposure and skin tone. In this paper, we analyze a set of manual Fitzpatrick skin type assignments and also employ the individual typology angle to automatically estimate the skin tone from face images. The set of manual skin tone rating experiments shows that there are inconsistencies between human raters that are difficult to eliminate. Efforts to automate skin tone rating suggest that it is particularly challenging on images collected without a calibration object in the scene. However, after the color-correction, the level of agreement between automated and manual approaches is found to be 96% or better for the MORPH images. To our knowledge, this is the first work to: (a) examine the consistency of manual skin tone ratings across observers, (b) document that there is substantial variation in the rating of the same image by different observers even when exemplar images are given for guidance and all images are color-corrected, and (c) compare manual versus automated skin tone ratings.


翻译:新闻报道显示, 更暗的皮肤色调导致面部识别错误的增加。 Fitzpatrick 比例表被广泛用于皮肤学, 用于对太阳暴露和皮肤色调的敏感度进行分类。 在本文中, 我们分析一套手工的Fitzpatrick皮肤类型任务, 并使用个体类型角度从脸部图像中自动估计皮肤色调。 一组人工皮肤色调评级实验显示, 人类定级器之间有不一致之处, 难以消除。 努力将皮肤色调评级自动化表明, 在现场没有校准对象的情况下收集的图像尤其具有挑战性。 但是, 在色校校后, 自动和手动方法之间的一致程度被发现为 MORPH 图像的96 % 或更好 。 据我们所知, 这是第一件工作是:(a) 检查观察者手动皮肤色调评级的一致性, (b) 文件显示, 不同观察者对同一图像的评级存在很大的差异, 即使为指导提供示例图像, 并且所有图像都被颜色校正, 以及 (c) 将手动与自动的皮肤色调评级进行比较。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
123+阅读 · 2020年9月8日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
超全的人脸识别数据集汇总,附打包下载
极市平台
90+阅读 · 2020年3月7日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
20+阅读 · 2020年6月8日
Stock Chart Pattern recognition with Deep Learning
Arxiv
6+阅读 · 2018年8月1日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
超全的人脸识别数据集汇总,附打包下载
极市平台
90+阅读 · 2020年3月7日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员