We consider a scenario wherein two parties Alice and Bob are provided $X_{1}^{n}$ and $X_{2}^{n}$ -- samples that are IID from a PMF $P_{X_1 X_2}$. Alice and Bob can communicate to Charles over (noiseless) communication links of rate $R_1$ and $R_2$ respectively. Their goal is to enable Charles generate samples $Y^{n}$ such that the triple $(X_{1}^{n},X_{2}^{n},Y^{n})$ has a PMF that is close, in total variation, to $\prod P_{X_1 X_2 Y}$. In addition, the three parties may posses pairwise shared common randomness at rates $C_1$ and $C_2$. We address the problem of characterizing the set of rate quadruples $(R_1,R_2,C_1,C_2)$ for which the above goal can be accomplished. We provide a set of sufficient conditions, i.e. an inner bound to the achievable rate region, and necessary conditions, i.e. an outer bound to the rate region for this three party setup. We provide a joint-typicality based random coding argument involving encoding and decoding operations to perform soft covering and a pertinent relaxation of the PMF requirement for the encoders.
翻译:我们考虑一种设想方案,即向两个缔约方Alice和Bob分别提供美元(X)1美元(美元)和美元(美元)和美元(美元) -- -- 来自PMF $PX_X_1X_1X_2美元(美元)的样本。Alice和Bob可以与Charles通过(无声)通信联系,以1美元(美元)和2美元(美元)与Charles进行联系。它们的目标是使Charles能够生成美元(美元)的样本。它们的目标是使Charles能够生成上述目标能够达到的3美元(R_1,R_2,C_1,C_2美元)的样本。我们提供了一套充分的条件,即与可实现的PX_1X_1X_2Y美元(美元)的样本相近。此外,三个缔约方可以以1美元(美元)和2美元(美元)的(无声)通信联系,以(无声)的通信联系方式与C_1美元(美元)的通信联系。我们提出了一套充分的条件,即与可实现率的内在约束的PX_X_1X_2美元(美元)区域,并符合共同的汇率(我们提出的3个)运作要求。