The vision of unmanned aerial vehicles is very significant for UAV-related applications such as search and rescue, landing on a moving platform, etc. In this work, we have developed an integrated system for the UAV landing on the moving platform, and the UAV object detection with tracking in the complicated environment. Firstly, we have proposed a robust LoG-based deep neural network for object detection and tracking, which has great advantages in robustness to object scale and illuminations compared with typical deep network-based approaches. Then, we have also improved based on the original Kalman filter and designed an iterative multi-model-based filter to tackle the problem of unknown dynamics in real circumstances of motion estimations. Next, we implemented the whole system and do ROS Gazebo-based testing in two complicated circumstances to verify the effectiveness of our design. Finally, we have deployed the proposed detection, tracking, and motion estimation strategies into real applications to do UAV tracking of a pillar and obstacle avoidance. It is demonstrated that our system shows great accuracy and robustness in real applications.


翻译:无人驾驶飞行器的愿景对于无人驾驶飞行器相关应用,如搜索和救援、降落在移动平台等非常重要。 在这项工作中,我们开发了一个无人驾驶飞行器在移动平台上着陆的综合系统,以及无人驾驶飞行器在复杂环境中跟踪的天体探测。首先,我们提议建立一个强有力的基于LoG的深神经网络,用于物体探测和跟踪,这与典型的深网络方法相比,在物体规模和照明的稳健性方面有很大优势。然后,我们还根据最初的Kalman过滤器进行了改进,并设计了一个迭代多模型过滤器,以解决在实际行动估计情况下的未知动态问题。接下来,我们实施了整个系统,并在两个复杂的情况下进行了基于ROS Gazebo的测试,以核实我们的设计效果。最后,我们将拟议的探测、跟踪和移动估计战略应用到实际应用中,以进行无人驾驶飞行器对界碑和障碍的跟踪,这证明我们的系统在实际应用中显示出很高的准确性和稳健性。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员