Our goal is to finally settle a persistent problem in Diophantine Approximation, that of finding best inhomogeneous linear approximates. Classical results from the theory of continued fractions solve the special homogeneous case in the form of a complete sequence of normal approximates. Real expansions that allow the notion of normality to percolate into the inhomogeneous setting will provide us with the general solution.


翻译:我们的目标是最终解决在二恶英接近性方面一个长期存在的问题,即找到最佳异同线性近似值的问题,持续分数理论的经典结果以正常近似完整序列的形式解决了特殊同质情况。 允许常态概念渗透到异异异环境的真正扩展将给我们提供总体解决方案。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月20日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月9日
VIP会员
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月20日
Top
微信扫码咨询专知VIP会员