One-shot action recognition aims to recognize new action categories from a single reference example, typically referred to as the anchor example. This work presents a novel approach for one-shot action recognition in the wild that computes motion representations robust to variable kinematic conditions. One-shot action recognition is then performed by evaluating anchor and target motion representations. We also develop a set of complementary steps that boost the action recognition performance in the most challenging scenarios. Our approach is evaluated on the public NTU-120 one-shot action recognition benchmark, outperforming previous action recognition models. Besides, we evaluate our framework on a real use-case of therapy with autistic people. These recordings are particularly challenging due to high-level artifacts from the patient motion. Our results provide not only quantitative but also online qualitative measures, essential for the patient evaluation and monitoring during the actual therapy.
翻译:单发行动识别旨在从一个单一参考示例中识别新的行动类别,通常称为锚样例。 这项工作为野外一次性行动识别提供了一种新颖的方法,它计算出运动的表示力强于可变动性条件。 然后通过评价锚和定向运动的表示力来进行单发行动识别。 我们还开发了一套辅助步骤,在最具挑战性的情况中提高行动识别的绩效。 我们的方法在公开的NTU-120单发行动识别基准上进行了评价,优于以往的行动识别模型。 此外,我们评估了我们关于自闭症患者治疗的实际使用案例的框架。这些记录特别具有挑战性,因为病人动作中的高水平的文物。 我们的结果不仅提供了数量性,而且还提供了在线定性措施,对于实际治疗期间病人评估和监测至关重要。