Recent work has emphasized the importance of balancing competing objectives in model training (e.g., accuracy vs. fairness, or competing measures of fairness). Such trade-offs reflect a broader class of multi-objective optimization (MOO) problems in which optimization methods seek Pareto optimal trade-offs between competing goals. In this work, we first introduce a differentiable measure that enables direct optimization of group fairness (specifically, balancing accuracy across groups) in model training. Next, we demonstrate two model-agnostic MOO frameworks for learning Pareto optimal parameterizations over different groups of neural classification models. We evaluate our methods on the specific task of hate speech detection, in which prior work has shown lack of group fairness across speakers of different English dialects. Empirical results across convolutional, sequential, and transformer-based neural architectures show superior empirical accuracy vs. fairness trade-offs over prior work. More significantly, our measure enables the Pareto machinery to ensure that each architecture achieves the best possible trade-off between fairness and accuracy w.r.t. the dataset, given user-prescribed error tolerance bounds.
翻译:最近的工作强调了在示范培训中平衡相互竞争的目标的重要性(例如,准确性相对于公平性,或相互竞争的公平措施),这种权衡反映了更广泛的多目标优化(MOO)问题,优化方法在其中寻求对相互竞争的目标的最佳权衡。在这项工作中,我们首先采用一种不同的措施,以便能够在示范培训中直接优化群体公平(具体地说,平衡各群体之间的准确性),接着,我们展示了两个模型-不可知性MOO框架,用于学习对不同神经分类模式群体的最佳参数化。我们评估了我们关于仇恨言论检测具体任务的方法,在其中,先前的工作表明不同英语方言的发言者之间缺乏群体公平性。跨进进、顺序和变异神经结构的实证结果显示高度的经验准确性,相对于先前工作的公平性权衡性。更重要的是,我们的措施使Pareto机制能够确保每个结构在公平性和准确性之间实现最佳的权衡。t.我们评估了数据设置,因为用户给出了错误容忍的界限。