Custom and natural lighting conditions can be emulated in images of the scene during post-editing. Extraordinary capabilities of the deep learning framework can be utilized for such purpose. Deep image relighting allows automatic photo enhancement by illumination-specific retouching. Most of the state-of-the-art methods for relighting are run-time intensive and memory inefficient. In this paper, we propose an efficient, real-time framework Deep Stacked Relighting Network (DSRN) for image relighting by utilizing the aggregated features from input image at different scales. Our model is very lightweight with total size of about 42 MB and has an average inference time of about 0.0116s for image of resolution $1024 \times 1024$ which is faster as compared to other multi-scale models. Our solution is quite robust for translating image color temperature from input image to target image and also performs moderately for light gradient generation with respect to the target image. Additionally, we show that if images illuminated from opposite directions are used as input, the qualitative results improve over using a single input image.
翻译:自定义和自然照明条件可以在编辑后期间的图像中模仿。 深深学习框架的特殊能力可用于此目的。 深图像光照允许通过光化特定触碰自动增强照片。 大多数最先进的点亮方法都是运行时间密集和记忆效率低的。 在本文中, 我们提出一个高效的实时框架 Deep Stacked 光化网络( DSRN), 用于利用不同尺度输入图像的综合特征重新点亮图像。 我们的模型重量非常轻,总大小约为42 MB, 平均推算时间约为0.0116s, 分辨率为1024\time 1024$, 与其他多尺度模型相比速度更快。 我们的解决方案非常有力, 将图像的颜色温度从输入图像转换到目标图像, 并对目标图像的轻度梯度生成进行轻度演化。 此外, 我们显示, 如果使用来自相反方向的图像作为输入, 则质量结果会因使用单一输入图像而得到改善 。