We propose a predictive runtime monitoring framework that forecasts the distribution of future positions of mobile robots in order to detect and avoid impending property violations such as collisions with obstacles or other agents. Our approach uses a restricted class of temporal logic formulas to represent the likely intentions of the agents along with a combination of temporal logic-based optimal cost path planning and Bayesian inference to compute the probability of these intents given the current trajectory of the robot. First, we construct a large but finite hypothesis space of possible intents represented as temporal logic formulas whose atomic propositions are derived from a detailed map of the robot's workspace. Next, our approach uses real-time observations of the robot's position to update a distribution over temporal logic formulae that represent its likely intent. This is performed by using a combination of optimal cost path planning and a Boltzmann noisy rationality model. In this manner, we construct a Bayesian approach to evaluating the posterior probability of various hypotheses given the observed states and actions of the robot. Finally, we predict the future position of the robot by drawing posterior predictive samples using a Monte-Carlo method. We evaluate our framework using two different trajectory datasets that contain multiple scenarios implementing various tasks. The results show that our method can predict future positions precisely and efficiently, so that the computation time for generating a prediction is a tiny fraction of the overall time horizon.
翻译:我们提出一个预测运行时间监测框架,预测移动机器人未来位置的分布,以便发现和避免即将发生的侵犯财产行为,例如与障碍或其他物剂碰撞。我们的方法使用有限的时间逻辑公式来代表代理人的可能意图,同时结合基于时间逻辑的最佳成本路径规划和巴伊西亚人根据机器人目前轨迹计算这些意图的概率。首先,我们建立一个庞大但有限的假设空间,说明作为时间逻辑公式代表的各种可能意图的可能意图,其原子主张来自机器人工作空间的详细地图。接下来,我们的方法利用实时观测机器人的位置来更新代表其可能意图的时间逻辑公式的分布情况。这是通过使用最佳成本路径规划和博尔兹曼噪音理性模型的组合来完成的。我们用这种方式构建一种巴伊西亚人的方法来评估各种假设的事后概率。最后,我们通过利用蒙特-卡洛洛公司详细的时间空间地图来预测机器人未来的位置,用一个精确的预测模型来更新代表其可能意图的时逻辑公式的分布情况。我们用两种不同的方法来评估机器人的未来位置,我们用一个精确的预测方法来评估我们未来的模型,我们用一种精确的预测方法来计算出我们未来的预测结果。