A mediation analysis approach is proposed for multiple exposures, multiple mediators, and a continuous scalar outcome under the linear structural equation modeling framework. It assumes that there exist orthogonal components that demonstrate parallel mediation mechanisms on the outcome, and thus is named Principal Component Mediation Analysis (PCMA). Likelihood-based estimators are introduced for simultaneous estimation of the component projections and effect parameters. The asymptotic distribution of the estimators is derived for low-dimensional data. A bootstrap procedure is introduced for inference. Simulation studies illustrate the superior performance of the proposed approach. Applied to a proteomics-imaging dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the proposed framework identifies protein deposition - brain atrophy - memory deficit mechanisms consistent with existing knowledge and suggests potential AD pathology by integrating data collected from different modalities.
翻译:对多种接触、多重调解人和线性结构等式模型框架下的连续定量结果提出了调解分析方法,假设存在显示结果平行调解机制的正方形组成部分,因此称为主要组成部分调解分析(PCMA),为同时估计组成部分预测和效果参数采用了以可能性为基础的估计器,为低维数据得出了测算器的无症状分布。引入了一个测算器程序进行推断。模拟研究显示了拟议方法的优异性表现。将拟议框架应用于阿尔茨海默氏病神经成形倡议(ADNI)的蛋白质组成数据集,该框架确定了与现有知识相一致的蛋白沉积-脑萎缩-记忆缺失机制,并通过整合不同模式收集的数据,提出了潜在的反倾销病理学。