A consequence of the fragmented and siloed healthcare landscape is that patient care (and data) is split along multitude of different facilities and computer systems and enabling interoperability between these systems is hard. The lack interoperability not only hinders continuity of care and burdens providers, but also hinders effective application of Machine Learning (ML) algorithms. Thus, most current ML algorithms, designed to understand patient care and facilitate clinical decision-support, are trained on limited datasets. This approach is analogous to the Newtonian paradigm of Reductionism in which a system is broken down into elementary components and a description of the whole is formed by understanding those components individually. A key limitation of the reductionist approach is that it ignores the component-component interactions and dynamics within the system which are often of prime significance in understanding the overall behaviour of complex adaptive systems (CAS). Healthcare is a CAS. Though the application of ML on health data have shown incremental improvements for clinical decision support, ML has a much a broader potential to restructure care delivery as a whole and maximize care value. However, this ML potential remains largely untapped: primarily due to functional limitations of Electronic Health Records (EHR) and the inability to see the healthcare system as a whole. This viewpoint (i) articulates the healthcare as a complex system which has a biological and an organizational perspective, (ii) motivates with examples, the need of a system's approach when addressing healthcare challenges via ML and, (iii) emphasizes to unleash EHR functionality - while duly respecting all ethical and legal concerns - to reap full benefits of ML.


翻译:零散和分散的医疗保健环境的后果是,病人护理(和数据)在不同的设施和计算机系统中被分成不同的不同设施和计算机系统,这些系统之间的互操作性是很难做到的;缺乏互操作性不仅妨碍护理和负担提供者的连续性,而且妨碍机器学习算法的有效运用;因此,大多数旨在了解病人护理和便利临床决策支持的当前ML算法都以有限的数据集为基础进行培训,这与牛顿式的减少治疗模式相似,在这个模式中,一个系统被打破为基本组成部分,而整体的描述则通过个别理解这些组成部分而形成。减少性收益方法的一个主要局限性是,它忽视了系统内各组成部分的相互作用和动态,而这些要素往往对了解复杂的适应系统的总体行为至关重要。 保健护理是一种CAS。 虽然对医疗数据应用ML的运用显示出临床决策支持的逐步改进,但ML具有更广泛的潜力,将护理方法重组为整体的提供和最大限度的护理价值。 然而,这一ML的潜力仍然基本上有待挖掘:主要由于电子保健记录(EHR)的功能局限性,而不能将健康记录(EHR)的动力视为整个组织系统的一个动态,而从组织系统的深度看,而不能看到整个健康的动力,而从组织需要是整个的动力。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员