We present ShapeFlow, a dynamic abstract interpreter for TensorFlow which quickly catches tensor shape incompatibility errors, one of the most common bugs in deep learning code. ShapeFlow shares the same APIs as TensorFlow but only captures and emits tensor shapes, its abstract domain. ShapeFlow constructs a custom shape computational graph, similar to the computational graph used by TensorFlow. ShapeFlow requires no code annotation or code modification by the programmer, and therefore is convenient to use. We evaluate ShapeFlow on 52 programs collected by prior empirical studies to show how fast and accurately it can catch shape incompatibility errors compared to TensorFlow. We use two baselines: a worst-case training dataset size and a more realistic dataset size. ShapeFlow detects shape incompatibility errors highly accurately -- with no false positives and a single false negative -- and highly efficiently -- with an average speed-up of 499X and 24X for the first and second baseline, respectively. We believe ShapeFlow is a practical tool that benefits machine learning developers. We will open-source ShapeFlow on GitHub to make it publicly available to both the developer and research communities.


翻译:我们为 TensorFlow 提供动态抽象解析器 ShapeFlow, 快速捕捉高压不相容错误, 这是深层学习代码中最常见的错误之一。 ShapeFlow 与 TensorFlow 共享相同的 API, 但只捕捉和释放高压形状, 其抽象域。 ShapeFlow 构建了一个自定义的形状计算图, 类似于 TensorFlow 所使用的计算图。 ShapeFlow 不需要程序员的编码说明或代码修改, 因此使用起来非常方便。 我们评估了前经验研究所收集的52个程序 ShapeFlow, 以显示它能够与 TensorFlow 相比快速和准确地捕捉到不相容错误。 我们使用两个基线: 最坏的训练数据集大小和更加现实的数据设置大小。 ShapeFlow 检测出一个非常精确的不相容错误 -- 没有虚假的正数和单一的负数 -- 并且效率很高 -- 其第一和第二基线的平均速度为 499X 和 24X 。 我们相信 ShapeFlow 是一个实用的工具, 将让机器公开学习它。 我们将打开 。

0
下载
关闭预览

相关内容

Google发布的第二代深度学习系统TensorFlow
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
TF Boys必看!一文搞懂TensorFlow 2.0新架构!
引力空间站
18+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
0+阅读 · 2021年1月16日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
12+阅读 · 2019年4月9日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关资讯
TF Boys必看!一文搞懂TensorFlow 2.0新架构!
引力空间站
18+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员