This paper introduces new constructions of sum-rank metric codes derived from algebraic function fields, as existing results on such codes remain limited. A major challenge lies in the determination of their parameters. We address this issue by employing quadratic Galois extensions, proposing two general constructions of $2\times2$ sum-rank codes. Analogous to algebraic geometry codes in the Hamming metric, our codes achieve a larger block length compared to existing constructions. We determine explicit parameters including dimensions and minimum distances of our codes, and we present an illustrative example using elliptic function fields. Finally, we discuss the asymptotic behavior of our codes and compare them with the Gilbert-Varshamov-like bound for sum-rank metric codes.
翻译:本文提出了从代数函数域导出的和-秩度量码的新构造方法,因为目前关于此类码的研究成果仍然有限。一个主要挑战在于其参数的确定。我们通过采用二次伽罗瓦扩张来解决这一问题,提出了两种通用的$2\\times2$和-秩码构造方案。与汉明度量中的代数几何码类似,我们的码相较于现有构造实现了更大的块长度。我们确定了包括码的维数和最小距离在内的显式参数,并通过椭圆函数域给出了一个说明性示例。最后,我们讨论了所构造码的渐近行为,并将其与和-秩度量码的吉尔伯特-瓦沙莫夫类界进行了比较。