In addition to being the eigenfunctions of the restricted Fourier operator, the angular spheroidal wave functions of the first kind of order zero and nonnegative integer characteristic exponents are the solutions of a singular self-adjoint Sturm-Liouville problem. The running time of the standard algorithm for the numerical evaluation of their Sturm-Liouville eigenvalues grows with both bandlimit and characteristic exponent. Here, we describe a new approach whose running time is bounded independent of these parameters. Although the Sturm-Liouville eigenvalues are of little interest themselves, our algorithm is a component of a fast scheme for the numerical evaluation of the prolate spheroidal wave functions developed by one of the authors. We illustrate the performance of our method with numerical experiments.
翻译:除了作为限制的Fleier操作员的机能外,第一种零级和非负整数特性的角形单体波函数是Sturm-Liouville单一的自我联合Sturm-Liouville问题的解决办法。Sturm-Liouville的数值评价标准算法的运行时间随着带宽和特性的提示而增加。这里,我们描述了一种新的方法,其运行时间不受这些参数的约束。虽然Sturm-Liouville egenvals本身没有多大兴趣,但我们的算法是作者之一所开发的对先锋天形波函数进行数字评价的一个快速方案的组成部分。我们用数字实验来说明我们方法的运作情况。