"What-if" questions are intuitively generated and commonly asked during the design process. Engineers and architects need to inherently conduct design decisions, progressing from one phase to another. They either use empirical domain experience, simulations, or data-driven methods to provide consequential feedback. We take an example from an interdisciplinary domain of energy-efficient building design to argue that the current methods for decision support have four limitations: 1. Less carefully inspected parametric independence raises the risks of biased results and spurious relationships. 2. The integration gap between data-driven methods and knowledge-based approaches. 3. Less explicit model interpretability for informed decision-making. 4. Ambiguous boundaries for machine assistance during the design process. In this study, we first clarify the nature of dynamic experience in individuals and constant principal knowledge in design. Sequentially, we introduce the causal inference into the energy-efficient design domain by proposing a four-step process to reveal and analyze the parametric dependencies within the design space by identifying the design causal diagram with interventions. The causal diagram provides a nexus for integrating domain knowledge with data-driven methods and allows interpretability and testability against the domain experience. The extraction of causal structures from the data is close to the nature design reasoning process. As an illustration, we applied the properties of the proposed estimators through simulations. The paper concludes with a feasibility study that demonstrates the realization of the proposed framework.


翻译:在设计过程中,工程师和建筑师需要从一个阶段到另一个阶段内在地进行设计决定,从一个阶段到另一个阶段。他们需要使用经验领域经验、模拟或数据驱动的方法来提供相应的反馈。我们从一个节能建筑设计跨学科领域举一个例子,以证明目前的决策支持方法有四个局限性:1. 未经仔细检查的参数独立性会产生偏差结果和虚假关系的风险。2. 数据驱动方法和知识型方法之间的整合差距。3. 知情决策的模型解释性不那么明确。4. 在设计过程中,机器援助的界限模糊。我们首先澄清个人动态经验的性质以及设计方面的经常主要知识。因此,我们提出一个四步进程,通过确定设计因果图表与干预相结合,揭示和分析设计空间内的偏差依赖性。因果图表提供了将域知识与数据驱动方法相结合的关联,并允许在设计过程中进行解释和测试。我们首先澄清了个人动态经验的性质以及设计过程中不断掌握的主要知识。我们从设计中推导出一个因果性结构,从而展示了设计结构的实现过程。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员