Federated learning enables clients to collaboratively learn a shared global model without sharing their local training data with a cloud server. However, malicious clients can corrupt the global model to predict incorrect labels for testing examples. Existing defenses against malicious clients leverage Byzantine-robust federated learning methods. However, these methods cannot provably guarantee that the predicted label for a testing example is not affected by malicious clients. We bridge this gap via ensemble federated learning. In particular, given any base federated learning algorithm, we use the algorithm to learn multiple global models, each of which is learnt using a randomly selected subset of clients. When predicting the label of a testing example, we take majority vote among the global models. We show that our ensemble federated learning with any base federated learning algorithm is provably secure against malicious clients. Specifically, the label predicted by our ensemble global model for a testing example is provably not affected by a bounded number of malicious clients. Moreover, we show that our derived bound is tight. We evaluate our method on MNIST and Human Activity Recognition datasets. For instance, our method can achieve a certified accuracy of 88% on MNIST when 20 out of 1,000 clients are malicious.


翻译:联邦学习使客户能够合作学习共享的全球模型,而不必与云端服务器分享其本地培训数据。 但是,恶意客户可以腐蚀全球模型,以预测不正确标签的测试实例。 现有防恶意客户的防御手段利用了Byzantine- robust 联合学习方法。 但是,这些方法无法令人理解地保证测试示例的预期标签不会受到恶意客户的影响。 我们通过混合联合学习来弥补这一差距。 特别是,考虑到任何基础联合学习算法,我们使用算法来学习多个全球模型,每个模型都是通过随机选择的客户子来学习的。 在预测一个测试示例的标签时,我们在全球模型中进行多数的投票。 我们显示,我们用任何基础联合学习算法进行的联动学习对于恶意客户来说都是非常安全的。 具体而言,我们混合全球模型为测试示例所预测的标签不会受到恶意客户数目的约束。 此外,我们显示,我们衍生的模型的界限很紧凑紧,我们用MNIST和人类活动识别数据的精确度来评估我们的方法, 当我们验证了1 000个客户的精确度时, 。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员