Future wireless networks require the integration of machine learning with communications, in an energy-efficient and privacy-preserving manner. Finding energy-efficient designs for federated learning (FL)-enabled wireless networks is of great interest. This work first proposes novel synchronous, asynchronous, and session-based designs for energy-efficient massive multiple-input multiple-output networks to support FL. The synchronous design relies on strict synchronization among users when executing each FL communication round, while the asynchronous design allows more flexibility for users to save energy by using lower computing frequencies. The session-based design splits the downlink and uplink phases in each FL communication round into separate sessions. In this design, we assign users such that one of the participating users in each session finishes its transmission and does not join the next session. As such, more power and degrees of freedom will be allocated to unfinished users, leading to higher rates, lower transmission times, and hence, a higher energy efficiency. In all three designs, we use zero-forcing processing for both uplink and downlink, and develop algorithms that optimize user assignment, time allocation, power, and computing frequencies to minimize the energy consumption at the base station and users, while guaranteeing a predefined maximum execution time of one FL communication round.
翻译:未来无线网络需要以节能和保密的方式将机器学习与通信相结合。 为联合学习(FL)驱动的无线网络寻找节能设计非常有意义。 这项工作首先提出新颖的同步、 零同步和会场设计, 用于节能的大型多投入产出网络以支持FL。 同步设计依靠用户在执行每个FL通信回合时的严格同步, 而无同步设计允许用户使用较低的计算频率节省能源。 基于会场的设计将每个FL通信回合的下链接和上链接阶段分成不同的会议。 在此设计中, 我们指派用户, 每次会议中的参与用户之一完成传输,而不参加下次会议。 因此, 更多的电力和自由度将分配给未完成的用户, 从而导致更高的费率, 降低传输时间, 从而提高能效。 在所有三种设计中, 我们使用零强制处理连接和下链接的方法, 并且将每个FL通信回合的下链接的下链接阶段分成不同的下链接, 并发展一种算法, 在最优化的用户分配、 最大时间分配、 最精确的F 计算和最精确的通信频率时段,, 最优化的用户在最精确的消费前的计算和最精确的计算。