Communication noise is a common feature in several real-world scenarios where systems of agents need to communicate in order to pursue some collective task. In particular, many biologically inspired systems that try to achieve agreements on some opinion must implement resilient dynamics that are not strongly affected by noisy communications. In this work, we study the popular 3-Majority dynamics, an opinion dynamics which has been proved to be an efficient protocol for the majority consensus problem, in which we introduce a simple feature of uniform communication noise, following (d'Amore et al. 2020). We prove that in the fully connected communication network of n agents and in the binary opinion case, the process induced by the 3-Majority dynamics exhibits a phase transition. For a noise probability $p < 1/3$, the dynamics reaches in logarithmic time an almost-consensus metastable phase which lasts for a polynomial number of rounds with high probability. Furthermore, departing from previous analyses, we further characterize this phase by showing that there exists an attractive equilibrium value $s_{\text{eq}} \in [n]$ for the bias of the system, i.e. the difference between the majority community size and the minority one. Moreover, the agreement opinion turns out to be the initial majority one if the bias towards it is of magnitude $\Omega(\sqrt{n\log n})$ in the initial configuration. If, instead, $p > 1/3$, no form of consensus is possible, and any information regarding the initial majority opinion is lost in logarithmic time with high probability. Despite more communications per-round are allowed, the 3-Majority dynamics surprisingly turns out to be less resilient to noise than the Undecided-State dynamics (d'Amore et al. 2020), whose noise threshold value is $p = 1/2$.
翻译:通信噪音是几个现实世界情景中常见的一个特征,在这些情景中,代理商系统需要进行通信,以便执行某些集体任务。特别是,许多试图就某些观点达成协议的生物激励系统必须实施不受到吵闹通信强烈影响的弹性动态。在这项工作中,我们研究了流行的3-Majority动态,这种3-Majority动态已被证明是多数共识问题的高效协议,在这种动态中,我们引入了一种简单的统一通信噪音特征,继(d'Amore等人,2020年)之后。我们证明,在完全连接的代理商通信网络和二元观点案例中,由3-Majority动态驱动的进程显示了一个阶段过渡阶段。对于噪音概率概率概率概率为 < 1/3 美元,动态在对数值几乎一致的时期达到几乎一致的阶段,对于多圆数的回合,我们从以前的分析中进一步描述这一阶段,显示存在有吸引力的平衡值 $sqprick{Q\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\