Solving linear systems is a ubiquitous task in science and engineering. Because directly inverting a large-scale linear system can be computationally expensive, iterative algorithms are often used to numerically find the inverse. To accommodate the dynamic range and precision requirements, these iterative algorithms are often carried out on floating-point processing units. Low-precision, fixed-point processors require only a fraction of the energy per operation consumed by their floating-point counterparts, yet their current usages exclude iterative solvers due to the computational errors arising from fixed-point arithmetic. In this work, we show that for a simple iterative algorithm, such as Richardson iteration, using a fixed-point processor can provide the same rate of convergence and achieve high-precision solutions beyond its native precision limit when combined with residual iteration. These results indicate that power-efficient computing platform consisting of analog computing devices can be used to solve a broad range of problems without compromising the speed or precision.


翻译:解决线性系统是科学和工程方面无处不在的任务。 由于直接反向大型线性系统可以计算成本昂贵, 迭代算法常常被用来从数字上找到反面。 为了适应动态范围要求和精确要求, 这些迭代算法往往在浮点处理器上进行。 低精度、 定点处理器只需要浮点对等机所消耗的每个操作的能量的一小部分, 但是它们目前的用法却排除了由于固定点算术产生的计算错误而产生的迭代解器。 在这项工作中, 我们显示, 对于简单的迭代算法, 比如 Richardson 迭代算法, 使用固定点处理器可以提供相同的趋同率, 并在与剩余迭代法结合时达到超出其本地精确限度的高精度解决方案 。 这些结果表明, 由模拟计算装置组成的节能计算平台可以用来解决一系列广泛的问题, 而不会影响速度或精确度 。

0
下载
关闭预览

相关内容

Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员