Scientific idea generation has been extensively studied in creativity theory and computational creativity research, providing valuable frameworks for understanding and implementing creative processes. However, recent work using Large Language Models (LLMs) for research idea generation often overlooks these theoretical foundations. We present a framework that explicitly implements combinatorial creativity theory using LLMs, featuring a generalization-level retrieval system for cross-domain knowledge discovery and a structured combinatorial process for idea generation. The retrieval system maps concepts across different abstraction levels to enable meaningful connections between disparate domains, while the combinatorial process systematically analyzes and recombines components to generate novel solutions. Experiments on the OAG-Bench dataset demonstrate our framework's effectiveness, consistently outperforming baseline approaches in generating ideas that align with real research developments (improving similarity scores by 7\%-10\% across multiple metrics). Our results provide strong evidence that LLMs can effectively realize combinatorial creativity when guided by appropriate theoretical frameworks, contributing both to practical advancement of AI-assisted research and theoretical understanding of machine creativity.


翻译:暂无翻译

1
下载
关闭预览

相关内容

粤港澳大湾区数字经济研究院是一家面向人工智能、数字经济产业和前沿科技的国际化创新型研究机构,坐落于深圳市深港科技创新合作区内。IDEA正与 MSR、Google Brain、DeepMind、OpenAI 等同行者一起推动人类 AI 技术前沿的发展。IDEA 的使命是立足社会需求,研发颠覆式创新技术并回馈社会,让更多的人从数字经济发展中获益。IDEA 秉承共享共赢共生的开源开放精神,积极营造自由而富有激情的创新工作环境,聚集全世界最聪慧的大脑一起创造人类社会最需要的价值。我们坚持科技擎天,产业立地,相信最好的研究从需求中来,到需求中去,最终惠及广大企业和受众。 IDEA 目前已聚集一批包括院士、世界著名大学教授、世界知名开源系统发明人在内的国际一流技术专家,致力于在 AI 基础技术与开源系统、人工智能金融科技、区块链技术与可信计算、企业级 AI 系统、产业智能物联网与智能机器人等领域研发国际顶尖成果,并培育一批国际领先科技企业,带动深圳乃至大湾区万亿级数字经济产业发展。 AIPT(AI 平台技术研究中心)致力于建设支撑人工智能算法、算力和数据的平台,通过具体项目的研发、实施和部署来推进 AI 技术的落地和产业化,团队成立以来,已发布 ReadPaper 论文阅读平台、BIOS 医疗知识图谱两款产品。AIPT 负责人-谢育涛曾任微软公司技术合伙人兼微软(中国)操作系统工程院院长。谢育涛在微软公司工作 20 余年,先后在微软美国总部的 Microsoft Office 产品组、必应团队、微软亚洲互联网工程院以及微软(中国)操作系统工程院、人工智能和云计算等多个研发部门担任重要职务。他在操作系统、搜索技术、人工智能、应用及服务领域拥有丰富的技术与管理经验。
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
知识图谱最新研究综述
深度学习自然语言处理
45+阅读 · 2020年6月14日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
39+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
10+阅读 · 2020年11月26日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
知识图谱最新研究综述
深度学习自然语言处理
45+阅读 · 2020年6月14日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
相关基金
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
39+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员