When randomized controlled trials are impractical or unethical to simultaneously compare multiple treatments, indirect treatment comparisons using single-arm trials offer valuable evidence for health technology assessments, especially for rare diseases and early-phase drug development. In practice, each sponsor conducts a single-arm trial on its own drug with restricted data-sharing and targets effects in its trial population, which can lead to unfair comparisons. This motivates methods for fair treatment comparisons across a range of target populations in distributed networks of single-arm trials sharing only aggregated data. Existing federated methods, which assume at least one site contains all treatments and allow pooling of treatment groups within the same site, cannot address this problem. We propose a novel distributed augmented calibration weighting (DAC) method to simultaneously estimate the pairwise average treatment effects (ATEs) across all trial population combinations in a distributed network of multiple single-arm trials. Using two communication rounds, DAC estimators balance covariates via calibration weighting, incorporate flexible nuisance parameter estimation, achieve doubly robust consistency, and yield results identical to pooled-data analysis. When nuisance parameters are estimated parametrically, DAC estimators are enhanced to achieve doubly robust inference with minimal squared first-order asymptotic bias. Simulations and a real-data application show good performance.


翻译:当随机对照试验难以实施或不道德用于同时比较多种治疗方案时,利用单臂试验进行间接治疗比较为卫生技术评估提供了宝贵证据,尤其适用于罕见病和早期药物研发。实践中,各申办方通常针对其自身药物开展单臂试验,数据共享受限且仅关注其试验人群中的效应,这可能导致不公平的比较。这促使我们需要开发在仅共享汇总数据的单臂试验分布式网络中,针对一系列目标人群进行公平治疗比较的方法。现有联邦学习方法假设至少一个研究中心包含所有治疗方案,并允许在同一中心内合并治疗组,无法解决此问题。我们提出一种新颖的分布式增强校准加权(DAC)方法,用于在多个单臂试验组成的分布式网络中同时估计所有试验人群组合间的两两平均处理效应(ATEs)。DAC估计量通过两轮通信,利用校准加权实现协变量平衡,融入灵活的干扰参数估计,获得双重稳健一致性,并产生与合并数据分析相同的结果。当采用参数化方法估计干扰参数时,DAC估计量可进一步实现具有最小一阶渐近偏差平方的双重稳健推断。仿真研究和实际数据应用均显示出良好性能。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年9月13日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员