Efficient modeling of jet diffusion during accidental release is critical for operation and maintenance management of hydrogen facilities. Deep learning has proven effective for concentration prediction in gas jet diffusion scenarios. Nonetheless, its reliance on extensive simulations as training data and its potential disregard for physical laws limit its applicability to unseen accidental scenarios. Recently, physics-informed neural networks (PINNs) have emerged to reconstruct spatial information by using data from sparsely-distributed sensors which are easily collected in real-world applications. However, prevailing approaches use the fully-connected neural network as the backbone without considering the spatial dependency of sensor data, which reduces the accuracy of concentration prediction. This study introduces the physics-informed graph deep learning approach (Physic_GNN) for efficient and accurate hydrogen jet diffusion prediction by using sparsely-distributed sensor data. Graph neural network (GNN) is used to model the spatial dependency of such sensor data by using graph nodes at which governing equations describing the physical law of hydrogen jet diffusion are immediately solved. The computed residuals are then applied to constrain the training process. Public experimental data of hydrogen jet is used to compare the accuracy and efficiency between our proposed approach Physic_GNN and state-of-the-art PINN. The results demonstrate our Physic_GNN exhibits higher accuracy and physical consistency of centerline concentration prediction given sparse concentration compared to PINN and more efficient compared to OpenFOAM. The proposed approach enables accurate and robust real-time spatial consequence reconstruction and underlying physical mechanisms analysis by using sparse sensor data.
翻译:暂无翻译