This paper introduces WeChat AI's participation in WMT 2021 shared news translation task on English->Chinese, English->Japanese, Japanese->English and English->German. Our systems are based on the Transformer (Vaswani et al., 2017) with several novel and effective variants. In our experiments, we employ data filtering, large-scale synthetic data generation (i.e., back-translation, knowledge distillation, forward-translation, iterative in-domain knowledge transfer), advanced finetuning approaches, and boosted Self-BLEU based model ensemble. Our constrained systems achieve 36.9, 46.9, 27.8 and 31.3 case-sensitive BLEU scores on English->Chinese, English->Japanese, Japanese->English and English->German, respectively. The BLEU scores of English->Chinese, English->Japanese and Japanese->English are the highest among all submissions, and that of English->German is the highest among all constrained submissions.
翻译:本文介绍WeChat AI 参与WMT 2021 有关英语 - > 中文,英语 - > 日语,日语 - > 英语和英语 - > 德语的共享新闻翻译任务。我们的系统以变换器(Vaswani等人,2017年)为基础,有几种新颖和有效的变体。在我们的实验中,我们采用数据过滤、大规模合成数据生成(即回译、知识蒸馏、预译、超前翻译、迭代内知识传输)、高级微调办法和提升基于自我可及的模型组合。我们的限制系统在英语 - 中文、英语 - 日语、日语和英语 - 日语 - 都分别获得36.9、46.9、27.8和31.3个案件敏感的BLEU评分。英语 - 中文 - 中文 - 中、英语 - 日语 - 和日语 - 日语的BLEEU评分在所有呈件中最高,英语 - > 德语的评分在所有受限制的提交中最高。