This work develops polynomial-degree-robust (p-robust) equilibrated a posteriori error estimates of finite element methods, based on $H^1$ auxiliary space decomposition. The proposed framework employs the fictitious space lemma for preconditioning and $H^1$ regular decomposition to decompose the finite element residual into $H^{-1}$ residuals that are further controlled by p-robust equilibrated a posteriori error analysis. As a result, we obtain novel p-robust a posteriori error estimates of conforming methods for the $H(\rm curl)$ and $H(\rm div)$ problems and the mixed method for the biharmonic equation. We also prove guaranteed a posteriori upper error bounds under convex domains or certain boundary conditions. Numerical experiments demonstrate the effectiveness and p-robustness of the proposed error estimators for the $H(\rm curl)$ conforming and the Hellan--Herrmann--Johnson methods.
翻译:本研究基于$H^1$辅助空间分解,发展了有限元方法的多项式次数鲁棒(p-鲁棒)平衡后验误差估计。所提出的框架采用虚拟空间引理进行预处理,并利用$H^1$正则分解将有限元残差分解为$H^{-1}$残差,进而通过p-鲁棒平衡后验误差分析进行控制。由此,我们获得了$H(\\rm curl)$和$H(\\rm div)$问题的协调方法以及双调和方程混合方法的新型p-鲁棒后验误差估计。同时证明了在凸区域或特定边界条件下可保证后验误差上界。数值实验验证了所提误差估计器在$H(\\rm curl)$协调方法和Hellan--Herrmann--Johnson方法中的有效性和p-鲁棒性。