We consider the complexity of maximizing egalitarian welfare in Friends and Enemies Games -- a subclass of hedonic games in which every agent partitions other agents into friends and enemies. We investigate two classic scenarios proposed in the literature, namely, Friends Appreciation ($\mathsf{FA}$) and Enemies Aversion ($\mathsf{EA}$): in the former, each agent primarily cares about the number of friends in her coalition, breaking ties based on the number of enemies, while in the latter, the opposite is true. For $\mathsf{EA}$, we show that our objective is hard to approximate within $O(n^{1-ε})$, for any fixed $ε>0$, and provide a polynomial-time $(n-1)$-approximation. For $\mathsf{FA}$, we obtain an NP-hardness result and a polynomial-time approximation algorithm. Our algorithm achieves a ratio of $2-Θ(\frac{1}{n})$ when every agent has at least two friends; however, if some agent has at most one friend, its approximation ratio deteriorates to $n/2$. We recover the $2-Θ(\frac{1}{n})$ approximation ratio for two important variants: when randomization is allowed and when the friendship relationship is symmetric. Additionally, for both $\mathsf{EA}$ and $\mathsf{FA}$ we identify special cases where the optimal egalitarian partition can be computed in polynomial time.


翻译:我们研究了在朋友与敌人博弈——一种每个智能体将其他智能体划分为朋友和敌人的享乐博弈子类——中最大化平等主义福利的复杂度。我们考察了文献中提出的两种经典情景:朋友偏好($\mathsf{FA}$)与敌人厌恶($\mathsf{EA}$):在前者中,每个智能体主要关注其联盟中朋友的数量,并基于敌人的数量来打破平局;而在后者中,情况则相反。对于$\mathsf{EA}$,我们证明了对于任意固定的$ε>0$,我们的目标函数难以在$O(n^{1-ε})$因子内近似,并提供了一个多项式时间的$(n-1)$-近似算法。对于$\mathsf{FA}$,我们得到了一个NP难性结果和一个多项式时间近似算法。当每个智能体至少有两个朋友时,我们的算法实现了$2-Θ(\frac{1}{n})$的近似比;然而,如果某些智能体至多有一个朋友,其近似比会恶化至$n/2$。我们在两个重要变体中恢复了$2-Θ(\frac{1}{n})$的近似比:允许随机化时以及当朋友关系对称时。此外,对于$\mathsf{EA}$和$\mathsf{FA}$,我们都识别出了可以在多项式时间内计算出最优平等主义划分的特殊情况。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年1月18日
专知会员服务
29+阅读 · 2020年10月2日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关资讯
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员