This paper presents a unified study of four distinct modeling approaches for classifying dysarthria severity in the Speech Analysis for Neurodegenerative Diseases (SAND) challenge. All models tackle the same five class classification task using a common dataset of speech recordings. We investigate: (1) a ViT-OF method leveraging a Vision Transformer on spectrogram images, (2) a 1D-CNN approach using eight 1-D CNN's with majority-vote fusion, (3) a BiLSTM-OF approach using nine BiLSTM models with majority vote fusion, and (4) a Hierarchical XGBoost ensemble that combines glottal and formant features through a two stage learning framework. Each method is described, and their performances on a validation set of 53 speakers are compared. Results show that while the feature-engineered XGBoost ensemble achieves the highest macro-F1 (0.86), the deep learning models (ViT, CNN, BiLSTM) attain competitive F1-scores (0.70) and offer complementary insights into the problem.


翻译:本文针对神经退行性疾病语音分析挑战中的构音障碍严重程度分类问题,对四种不同的建模方法进行了统一研究。所有模型均使用相同的语音录音数据集,处理相同的五分类任务。我们研究了:(1)ViT-OF方法,利用视觉Transformer处理频谱图图像;(2)1D-CNN方法,使用八个一维卷积神经网络结合多数投票融合;(3)BiLSTM-OF方法,采用九个双向长短期记忆网络结合多数投票融合;(4)分层XGBoost集成方法,通过两阶段学习框架结合声门和共振峰特征。详细描述了每种方法,并比较了它们在包含53名说话者的验证集上的性能。结果表明,虽然基于特征工程的XGBoost集成获得了最高的宏平均F1分数(0.86),但深度学习模型(ViT、CNN、BiLSTM)也取得了具有竞争力的F1分数(0.70),并为该问题提供了互补性的研究视角。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2月11日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
NLP自然语言处理(二)——基础文本分析
乐享数据DataScientists
12+阅读 · 2017年2月7日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
NLP自然语言处理(二)——基础文本分析
乐享数据DataScientists
12+阅读 · 2017年2月7日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员