Differentiable rendering allows the application of computer graphics on vision tasks, e.g. object pose and shape fitting, via analysis-by-synthesis, where gradients at occluded regions are important when inverting the rendering process. To obtain those gradients, state-of-the-art (SoTA) differentiable renderers use rasterization to collect a set of nearest components for each pixel and aggregate them based on the viewing distance. In this paper, we propose VoGE, which uses ray tracing to capture nearest components with their volume density distributions on the rays and aggregates via integral of the volume densities based on Gaussian ellipsoids, which brings more efficient and stable gradients. To efficiently render via VoGE, we propose an approximate close-form solution for the volume density aggregation and a coarse-to-fine rendering strategy. Finally, we provide a CUDA implementation of VoGE, which gives a competitive rendering speed in comparison to PyTorch3D. Quantitative and qualitative experiment results show VoGE outperforms SoTA counterparts when applied to various vision tasks,e.g., object pose estimation, shape/texture fitting, and occlusion reasoning. The VoGE library and demos are available at https://github.com/Angtian/VoGE.
翻译:可区别的翻译使计算机图形在视觉任务上的应用,例如,对象的形状和形状的形状,通过分析合成来应用,使隐蔽区域的梯度在翻转转换过程时很重要。要获得这些梯度,最先进的可区别的转化器使用光学化来收集每个像素的一组最接近的组件,并根据外观距离加以汇总。在本文中,我们建议VoGE使用射线追踪来捕捉最接近的组件,这些组件的体积密度分布在光线和综合体上,其体积密度分布在高山的光线和综合体上,其密度在翻转过程中很重要。为了通过VoGE有效转换这些梯度,我们建议对量密度汇总采用近似接近的解决方案,并采用粗微的对流战略。最后,我们提供CUDA VoGEGE的落实情况,在与PyToirch3D比较时具有竞争性的翻版速度。定量和定性实验结果显示VGEA/ATA的外形结构,在应用各种图像、VEGEGE/Slislisal、Veal/Slislex推理时显示时, 和Bexlus。