Given the prominence of current 3D sensors, a fine-grained analysis on the basic point cloud data is worthy of further investigation. Particularly, real point cloud scenes can intuitively capture complex surroundings in the real world, but due to 3D data's raw nature, it is very challenging for machine perception. In this work, we concentrate on the essential visual task, semantic segmentation, for large-scale point cloud data collected in reality. On the one hand, to reduce the ambiguity in nearby points, we augment their local context by fully utilizing both geometric and semantic features in a bilateral structure. On the other hand, we comprehensively interpret the distinctness of the points from multiple resolutions and represent the feature map following an adaptive fusion method at point-level for accurate semantic segmentation. Further, we provide specific ablation studies and intuitive visualizations to validate our key modules. By comparing with state-of-the-art networks on three different benchmarks, we demonstrate the effectiveness of our network.
翻译:鉴于当前三维传感器的显著性,对基本点云数据进行细微分析是值得进一步调查的。 特别是,真正的点云场可以直观地捕捉到真实世界中复杂的环境,但由于三维数据原始性质,对机器的感知非常具有挑战性。 在这项工作中,我们集中关注在现实中收集的大型点云数据的基本视觉任务,即语义分解。一方面,为了减少附近点的模糊性,我们充分利用双边结构中的几何和语义特征,从而扩大了地方环境。另一方面,我们全面解读了多个分辨率的点的特性,并代表了在点一级为准确的语义分解采用适应融合方法之后的地貌图。此外,我们提供了具体的反向研究和直观的视觉,以验证我们的关键模块。通过在三个不同基准上与最先进的网络进行比较,我们展示了我们的网络的有效性。