Low-latency provenance embedding methods have received traction in vehicular networks for their ability to track the footprint of information flow. One such known method is based on Bloom filters wherein the nodes that forward the packets appropriately choose a certain number of hash functions to embed their signatures in a shared space in the packet. Although Bloom filter methods can achieve the required accuracy level in provenance recovery, they are known to incur higher processing delay since higher number of hash functions are needed to meet the accuracy level. Motivated by this behaviour, we identify a regime of delay-constraints within which new provenance embedding methods must be proposed as Bloom filter methods are no longer applicable. To fill this research gap, we present network-coded edge embedding (NCEE) protocols that facilitate low-latency routing of packets in vehicular network applications. First, we show that the problem of designing provenance recovery methods for the NCEE protocol is equivalent to the celebrated problem of compressed sensing, however, with additional constraints of path formation on the solution. Subsequently, we present a family of path-aware orthogonal matching pursuit algorithms that jointly incorporates the sparsity and path constraints. Through extensive simulation results, we show that our algorithms enjoy low-complexity implementation, and also improve the path recovery performance when compared to path-agnostic counterparts.


翻译:低延迟源嵌入方法在车辆网络中获得了牵引力,以了解跟踪信息流动足迹的能力。这种已知方法之一是Bloom过滤器,其中传送包的节点适当选择了一定数量的散列功能,以便在包中共享空间嵌入其签名。虽然Bloom过滤器方法可以在源代码回收中达到所要求的准确度,但已知这些方法的处理延迟程度较高,因为需要增加散列功能才能达到准确度。受此行为驱动,我们确定了一个延迟限制机制,其中必须提出新的源代码嵌入方法,因为布鲁姆过滤法不再适用。为了填补这一研究空白,我们提出了网络编码边缘嵌入(NCEEE)协议,以便利在视频网络应用程序中低延迟配置包的路径。首先,我们表明,设计NCEEE协议的源功能回收方法与已知的压缩感知问题相当。然而,在解决方案的路径形成方面还有额外的限制。随后,我们展示了路径测量或分层过滤方法的组合,同时展示了我们运行路径的路径测量和路径测量限制。

0
下载
关闭预览

相关内容

ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月15日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关VIP内容
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员