Quantum copy-protection is an innovative idea that uses the no-cloning property of quantum information to copy-protect programs and was first put forward by [Aar09]. The general goal is that a program distributor can distribute a quantum state |\psi>, whose classical description is secret to the users; a user can use this state to run the program P on his own input, but not be able to pirate this program P or create another state with the same functionality. We give a number of initial results in this area: We present a first quantum copy protection scheme for for any unlearnable function families relative to a classical oracle. The construction is based on membership oracles for hidden subspaces in F_n^2. We prove the security of this scheme relative to this classical oracle used, namely, the subspace membership oracle with the functionality of computing the secret function we want to copy-protect. The security proof builds on the quantum lower bound for the Direct-Product problem ([AC12, BDS16]) and the quantum unlearnability of the copy-protected functions. We point out the relationship between public-key quantum money and copy protection: any quantum copy protection schemes for quantum-CCA secure encryption or for certain post-quantum trapdoor functions will imply publicly verifiable quantum money, where former can be instantiated from the LWE assumption.
翻译:量子副本保护是一种创新的理念,它使用量子信息的无冠属性来复制保护程序,首先由[Aar09]提出。总的目标是,程序经销商可以分发量子状态 ⁇ psi >,其传统描述对用户是秘密的;用户可以使用这个状态来运行程序P,但不能通过自己的输入来盗用这个程序P 或创建另一个功能相同的国家。我们给出了这方面的一些初步结果:我们为任何不可忽略的功能家庭提供了第一个量子副本保护计划,它与古典或古典相比。建造的基础是F_n ⁇ 2的隐藏子空间的会籍或信箱;我们证明这个计划相对于所使用的传统或信箱使用的方案的安全性,即与计算我们想要复制保护的秘密功能的子空间成员或信箱。安全证据建立在直接产品问题([AC12,BDS16] 和复制功能的量子不易读的功能上。我们指出,对于F_nastical Q-cretaim propossitional precreal regal pastitutional pre