We initiate the study of multi-party computation for classical functionalities (in the plain model) with security against malicious polynomial-time quantum adversaries. We observe that existing techniques readily give a polynomial-round protocol, but our main result is a construction of *constant-round* post-quantum multi-party computation. We assume mildly super-polynomial quantum hardness of learning with errors (LWE), and polynomial quantum hardness of an LWE-based circular security assumption. Along the way, we develop the following cryptographic primitives that may be of independent interest: 1. A spooky encryption scheme for relations computable by quantum circuits, from the quantum hardness of an LWE-based circular security assumption. This yields the first quantum multi-key fully-homomorphic encryption scheme with classical keys. 2. Constant-round zero-knowledge secure against multiple parallel quantum verifiers from spooky encryption for relations computable by quantum circuits. To enable this, we develop a new straight-line non-black-box simulation technique against *parallel* verifiers that does not clone the adversary's state. This forms the heart of our technical contribution and may also be relevant to the classical setting. 3. A constant-round post-quantum non-malleable commitment scheme, from the mildly super-polynomial quantum hardness of LWE.


翻译:我们开始研究传统功能的多党计算(在平方模型中),防止恶意的多元时的量子对手。我们观察到,现有的技术很容易产生一个多边回合协议,但我们的主要结果是构建了“固态回合”后QQantantum多党计算法。我们假设了以错误(LWE)和基于LWE的循环安全假设的隐蔽加密的多式量子硬度,对传统功能(LWE)进行温和的超多极量量子计算。与此同时,我们开发了以下可能具有独立兴趣的加密原始技术:1. 从基于 LWE 的硬循环安全假设的量子硬度判断法中,对可以通过量子电路进行可比较的关系进行折叠加的奇异加密方法。这产生了第一个以经典键为主的量子全态加密的量子加密方案。2. 常态零认知安全,防止以量子加密为主的多种平行的量子加密方法。为了实现这一点,我们开发了一个新的直线非黑箱模拟技术,用来对付以量电路为主的量电路路路的量电路路路进行可比较的、不作主的量级验证者。3.这个不复制的模型的模型的模型的不复制的模型,这个不复制式的定式的定式的定式的定式的定式的定式系统。

1
下载
关闭预览

相关内容

【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
专知会员服务
61+阅读 · 2020年3月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Github项目推荐 | 知识图谱文献集合
AI研习社
26+阅读 · 2019年4月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月11日
Arxiv
0+阅读 · 2021年1月10日
Arxiv
0+阅读 · 2021年1月9日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
专知会员服务
61+阅读 · 2020年3月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Github项目推荐 | 知识图谱文献集合
AI研习社
26+阅读 · 2019年4月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员