We prove that for every decision tree, the absolute values of the Fourier coefficients of given order $\ell\geq1$ sum to at most $c^{\ell}\sqrt{\binom{d}{\ell}(1+\log n)^{\ell-1}},$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant. This bound is essentially tight and settles a conjecture due to Tal (arxiv 2019; FOCS 2020). The bounds prior to our work degraded rapidly with $\ell,$ becoming trivial already at $\ell=\sqrt{d}.$ As an application, we obtain, for every integer $k\geq1,$ a partial Boolean function on $n$ bits that has bounded-error quantum query complexity at most $\lceil k/2\rceil$ and randomized query complexity $\tilde{\Omega}(n^{1-1/k}).$ This separation of bounded-error quantum versus randomized query complexity is best possible, by the results of Aaronson and Ambainis (STOC 2015). Prior to our work, the best known separation was polynomially weaker: $O(1)$ versus $\Omega(n^{2/3-\epsilon})$ for any $\epsilon>0$ (Tal, FOCS 2020). As another application, we obtain an essentially optimal separation of $O(\log n)$ versus $\Omega(n^{1-\epsilon})$ for bounded-error quantum versus randomized communication complexity, for any $\epsilon>0.$ The best previous separation was polynomially weaker: $O(\log n)$ versus $\Omega(n^{2/3-\epsilon})$ (implicit in Tal, FOCS 2020).
翻译:我们证明,对于每一个决策树来说, 给定顺序的 Fleier 系数的绝对值 $\ ell\ geq1$, 最多为 $@ {sqrt{dhell} (1\ log n) / ell-1} 美元, 美元是变量数, 美元是树深度, 美元是美元, 美元是绝对不变的。 这个约束基本上很紧, 并解决了Tal( arxiv 2019; FOCS 2020) 的随机复杂性。 在我们工作之前, 美元迅速贬值, 美元已经变得微不足道, $ $ =ell\ scrt{sqrt{d} 。 作为应用程序, 我们得到了 美元整数 $@ qege2, 美元是部分的Boolean 函数, 已经绑定了上- rorror 量的复杂度, $ k/2\\ rx_ 。 在2015年, AS 和 美元最接近的解析的O 。