Augmented reality devices have the potential to enhance human perception and enable other assistive functionalities in complex conversational environments. Effectively capturing the audio-visual context necessary for understanding these social interactions first requires detecting and localizing the voice activities of the device wearer and the surrounding people. These tasks are challenging due to their egocentric nature: the wearer's head motion may cause motion blur, surrounding people may appear in difficult viewing angles, and there may be occlusions, visual clutter, audio noise, and bad lighting. Under these conditions, previous state-of-the-art active speaker detection methods do not give satisfactory results. Instead, we tackle the problem from a new setting using both video and multi-channel microphone array audio. We propose a novel end-to-end deep learning approach that is able to give robust voice activity detection and localization results. In contrast to previous methods, our method localizes active speakers from all possible directions on the sphere, even outside the camera's field of view, while simultaneously detecting the device wearer's own voice activity. Our experiments show that the proposed method gives superior results, can run in real time, and is robust against noise and clutter.


翻译:强化的现实装置有可能提高人的认知力,并在复杂的谈话环境中促成其他辅助功能。 有效捕捉理解这些社交互动所必需的视听环境首先需要探测和定位设备磨损器和周围人群的语音活动。 这些任务具有挑战性,因为它们的自我中心性质:磨损器的头部运动可能会引起运动模糊,周围的人可能出现在困难的视觉角度,周围的人可能会出现,并且可能存在隔离、视觉屏蔽、声音噪音和坏照明。在这些条件下,以往最先进的主动扬声器探测方法不会产生令人满意的结果。 相反,我们用视频和多声道麦克风阵列的音频从新环境解决问题。我们提出一种新的端到端的深层次学习方法,能够提供强有力的语音活动探测和定位结果。 与以往的方法不同,我们的方法将活跃的发言者从球场上的所有可能的方向,甚至是摄影场外,都本地化,同时探测设备磨损器本身的语音活动。 我们的实验显示,提议的方法可以产生更优越的结果,可以实时运行,并且能够抵御噪音和动态。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员