The ability to guarantee safety and progress for all vehicles is vital to the success of the autonomous vehicle industry. We present a framework for designing autonomous vehicle behavior in a way that is safe and guarantees progress for all agents. In this paper, we first introduce a new game paradigm which we term the quasi-simultaneous game. We then define an agent protocol that all agents must use to make decisions in this quasi-simultaneous game setting. According to the protocol, agents first select an intended action using a behavioral profile. Then, the protocol defines whether an agent has precedence to take its intended action or must take a sub-optimal action. The protocol ensures safety under all traffic conditions and liveness for all agents under `sparse' traffic conditions. We provide proofs of correctness of the protocol and validate our results in simulation.


翻译:保障所有车辆安全和进步的能力对于自主汽车工业的成功至关重要。我们提出了一个设计自主车辆行为的框架,其方式是安全的,保证所有代理商的进步。在本文中,我们首先引入一个新的游戏模式,我们称之为准同时游戏。然后我们定义一个代理商必须在这种半同时游戏环境中作出决定的代理协议。根据协议,代理商首先选择一种使用行为特征的预定行动。然后,协议确定代理人是否优先采取其预定行动,还是必须采取次优行动。协议确保所有代理商在“垃圾”交通条件下的安全性和生活状况。我们提供协议正确性的证据,并在模拟中验证我们的结果。

0
下载
关闭预览

相关内容

可信机器学习的公平性综述
专知会员服务
66+阅读 · 2021年2月23日
【AAAI2021】用于多标签图像分类的深度语义词典学习
专知会员服务
14+阅读 · 2020年12月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【泡泡一分钟】无监督学习的立体匹配方法(ICCV-2017)
泡泡机器人SLAM
8+阅读 · 2018年10月9日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
35+阅读 · 2019年11月7日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
8+阅读 · 2018年1月30日
VIP会员
相关VIP内容
可信机器学习的公平性综述
专知会员服务
66+阅读 · 2021年2月23日
【AAAI2021】用于多标签图像分类的深度语义词典学习
专知会员服务
14+阅读 · 2020年12月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【泡泡一分钟】无监督学习的立体匹配方法(ICCV-2017)
泡泡机器人SLAM
8+阅读 · 2018年10月9日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员