In this paper, we consider an unconstrained stochastic optimization problem where the objective function exhibits high-order smoothness. Specifically, we propose a new stochastic first-order method (SFOM) with multi-extrapolated momentum, in which multiple extrapolations are performed in each iteration, followed by a momentum update based on these extrapolations. We demonstrate that the proposed SFOM can accelerate optimization by exploiting the high-order smoothness of the objective function $f$. Assuming that the $p$th-order derivative of $f$ is Lipschitz continuous for some $p\ge2$, and under additional mild assumptions, we establish that our method achieves a sample complexity of $\widetilde{\mathcal{O}}(\epsilon^{-(3p+1)/p})$ for finding a point $x$ such that $\mathbb{E}[\|\nabla f(x)\|]\le\epsilon$. To the best of our knowledge, this is the first SFOM to leverage arbitrary-order smoothness of the objective function for acceleration, resulting in a sample complexity that improves upon the best-known results without assuming the mean-squared smoothness condition. Preliminary numerical experiments validate the practical performance of our method and support our theoretical findings.


翻译:本文研究一类无约束随机优化问题,其中目标函数具有高阶光滑性。具体而言,我们提出一种带有多重外推动量的新型随机一阶方法,该方法在每次迭代中执行多次外推操作,随后基于这些外推结果进行动量更新。我们证明所提出的随机一阶方法能够利用目标函数$f$的高阶光滑性来加速优化过程。假设$f$的$p$阶导数($p\ge2$)满足Lipschitz连续性,并在附加的温和假设条件下,我们证明该方法在寻找满足$\mathbb{E}[\|\nabla f(x)\|]\le\epsilon$的点$x$时,能达到$\widetilde{\mathcal{O}}(\epsilon^{-(3p+1)/p})$的样本复杂度。据我们所知,这是首个利用目标函数任意阶光滑性实现加速的随机一阶方法,其样本复杂度在不假设均方光滑条件的情况下改进了现有最佳结果。初步数值实验验证了本方法的实际性能,并支持了理论结论。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员