Protecting users from accessing malicious web sites is one of the important management tasks for network operators. There are many open-source and commercial products to control web sites users can access. The most traditional approach is blacklist-based filtering. This mechanism is simple but not scalable, though there are some enhanced approaches utilizing fuzzy matching technologies. Other approaches try to use machine learning (ML) techniques by extracting features from URL strings. This approach can cover a wider area of Internet web sites, but finding good features requires deep knowledge of trends of web site design. Recently, another approach using deep learning (DL) has appeared. The DL approach will help to extract features automatically by investigating a lot of existing sample data. Using this technique, we can build a flexible filtering decision module by keep teaching the neural network module about recent trends, without any specific expert knowledge of the URL domain. In this paper, we apply a mechanical approach to generate feature vectors from URL strings. We implemented our approach and tested with realistic URL access history data taken from a research organization and data from the famous archive site of phishing site information, PhishTank.com. Our approach achieved 2~3% better accuracy compared to the existing DL-based approach.


翻译:保护用户不访问恶意网站是网络操作者的重要管理任务之一。 保护用户不访问恶意网站是网络操作者的重要管理任务之一。 有许多开放源码和商业产品可以控制网站用户可以访问。 最传统的做法是基于黑名单的过滤。 最传统的方法是基于黑名单的过滤。 这个机制简单但不可扩展, 尽管有一些使用模糊匹配技术的强化方法。 其他方法试图使用机器学习(ML)技术, 从 URL 字符串中提取特性。 这种方法可以覆盖更广泛的互联网网站内容, 但找到良好的特征需要深入了解网站设计趋势。 最近, 出现了另一种使用深层次学习( DL) 的方法。 DL 方法将有助于通过调查大量现有样本数据来自动提取特征。 使用这一方法,我们可以建立一个灵活的过滤决定模块, 向神经网络模块教授最新趋势, 而不对 URL 域域有任何具体专家知识。 在本文中, 我们采用机械方法从 URL 字符串中生成特性矢量。 我们采用了我们的方法, 并用现实的 URL 访问历史数据测试了我们的方法, 从一个研究机构和著名的档案站点信息中的数据, PhishTank- k.com。 我们的方法实现了2-% 比较现有的精确到D3 。

0
下载
关闭预览

相关内容

应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年7月25日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
16+阅读 · 2020年5月20日
VIP会员
相关VIP内容
应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年7月25日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员