We relate the problem of best low-rank approximation in the spectral norm for a matrix $A$ to Kolmogorov $n$-widths and corresponding optimal spaces. We characterize all the optimal spaces for the image of the Euclidean unit ball under $A$ and we show that any orthonormal basis in an $n$-dimensional optimal space generates a best rank-$n$ approximation to $A$. We also present a simple and explicit construction to obtain a sequence of optimal $n$-dimensional spaces once an initial optimal space is known. This results in a variety of solutions to the best low-rank approximation problem and provides alternatives to the truncated singular value decomposition. This variety can be exploited to obtain best low-rank approximations with problem-oriented properties.
翻译:我们把光谱规范中最低的近似值问题与基质美元与科尔莫戈罗夫(Kolmogorov)最优的近似值和相应的最佳空间问题联系起来,我们把欧洲clidean 单位球图像的最佳空间都标为低于A美元,并且我们证明,在以美元为单位的最佳空间中,任何正态的正态都会产生最优的一等-一等-一等近近似值为$A美元。我们还提出了一个简单而明确的构造,以在知道初始最佳空间后获得最优的一等一等的一等的一等一等的一等一等的一等一等的一等空间。这导致解决了最低的近似问题,为短的单价分解定位提供了替代方案。这种差异可以用来获得以问题为导向的最佳低端近似值。