We propose a particle-based method to simulate thin-film fluid that jointly facilitates aggressive surface deformation and vigorous tangential flows. We build our dynamics model from the surface tension driven Navier-Stokes equation with the dimensionality reduced using the asymptotic lubrication theory and customize a set of differential operators based on the weakly compressible Smoothed Particle Hydrodynamics (SPH) for evolving pointset surfaces. The key insight is that the compressible nature of SPH, which is unfavorable in its typical usage, is helpful in our application to co-evolve the thickness, calculate the surface tension, and enforce the fluid incompressibility on a thin film. In this way, we are able to two-way couple the surface deformation with the in-plane flows in a physically based manner. We can simulate complex vortical swirls, fingering effects due to Rayleigh-Taylor instability, capillary waves, Newton's interference fringes, and the Marangoni effect on liberally deforming surfaces by presenting both realistic visual results and numerical validations. The particle-based nature of our system also enables it to conveniently handle topology changes and codimension transitions, allowing us to marry the thin-film simulation with a wide gamut of 3D phenomena, such as pinch-off of unstable catenoids, dripping under gravity, merging of droplets, as well as bubble rupture.


翻译:我们提出一种粒子法来模拟薄膜液体,以共同促进侵略性的表面变形和强劲的正流。我们从表面紧张驱动的纳维埃-斯托克方程式中构建动态模型,使用无温润润滑理论进行维度降低,并定制一套基于微弱压缩的光滑质流体动力学(SPH)的不同操作器,用于不断演变的指针表面。关键的见解是,SPH的压缩性质,在其典型用途中是不可接受的,有助于我们应用它来共同改变厚度,计算表层紧张,并在薄薄膜上执行液体压抑性。这样,我们就能将表面变形与机内流相双对齐,以物理为基础,我们可以模拟复合的浮质波纹,由于Rayleiley-Taylor不稳定性、毛滑波、牛顿的阻力波,以及马朗尼对自由变形表面表面的变形作用,通过展示现实的视觉结果和精确的直径直径直压性,从而将颗粒变的精度变成一个稳定的直流,作为我们最易的直流质的变的直流体,作为我们最易的直流的直流的直流的变的直质的变,作为我们的直质的直质的直流的直径的直径的直径的直态的轨,从而的直观,从而的直观,从而的直观的直观的微的直观的微的微的微的变。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
【2020新书】3D建模初学者指南,190页pdf
专知会员服务
33+阅读 · 2020年9月15日
专知会员服务
41+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
156+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图像/视频去噪算法资源集锦
专知
18+阅读 · 2019年12月14日
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
Arxiv
0+阅读 · 2021年7月6日
Arxiv
0+阅读 · 2021年7月5日
VIP会员
相关VIP内容
【2020新书】3D建模初学者指南,190页pdf
专知会员服务
33+阅读 · 2020年9月15日
专知会员服务
41+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
156+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
图像/视频去噪算法资源集锦
专知
18+阅读 · 2019年12月14日
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
Top
微信扫码咨询专知VIP会员