The progress in modelling time series and, more generally, sequences of structured-data has recently revamped research in anomaly detection. The task stands for identifying abnormal behaviours in financial series, IT systems, aerospace measurements, and the medical domain, where anomaly detection may aid in isolating cases of depression and attend the elderly. Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations and since the definition of anomalous is sometimes subjective. Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD). HypAD learns self-supervisedly to reconstruct the input signal. We adopt best practices from the state-of-the-art to encode the sequence by an LSTM, jointly learnt with a decoder to reconstruct the signal, with the aid of GAN critics. Uncertainty is estimated end-to-end by means of a hyperbolic neural network. By using uncertainty, HypAD may assess whether it is certain about the input signal but it fails to reconstruct it because this is anomalous; or whether the reconstruction error does not necessarily imply anomaly, as the model is uncertain, e.g. a complex but regular input signal. The novel key idea is that a detectable anomaly is one where the model is certain but it predicts wrongly. HypAD outperforms the current state-of-the-art for univariate anomaly detection on established benchmarks based on data from NASA, Yahoo, Numenta, Amazon, Twitter. It also yields state-of-the-art performance on a multivariate dataset of anomaly activities in elderly home residences, and it outperforms the baseline on SWaT. Overall, HypAD yields the lowest false alarms at the best performance rate, thanks to successfully identifying detectable anomalies.
翻译:建模时间序列的进展,以及更一般地说,结构化数据序列的顺序最近改进了异常检测的研究。 任务在于识别金融序列、 IT系统、 航空航天测量和医疗领域的异常行为, 异常检测有助于孤立抑郁症患者并照顾老年人。 时间序列中的异常检测是一项复杂任务, 因为高度非线性时间相关性和异常现象的定义有时是主观的。 我们在这里建议对异常现象检测( HypardAd) 使用超双曲性不确定性的新做法。 HypAd 学会自我监督重建输入信号。 我们采用了从最先进的金融序列、 IT 系统、 信息技术系统、 航空航天测量和医疗领域 的异常行为, 与一个解码器一起学习异常现象, 以重建信号, 在GAN批评者的帮助下。 不确定性是通过超线性神经网络来估计最终结果。 使用不确定性, HypeadAdAdd可能评估输入信号是否正确, 但是它无法重建输入信号, 因为它是非反常态的; 或者说, 重建错误的检测错误是正常数据, 也必然意味着, 正常的信号是正常的, 数据是正常的, 。 saddal dal dismodeald smodeal be madal mad mad madal mad mad mad madal mad madal madal mad sal be mad sal be sal be sal be sal be sal be sal be sal be sal be sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sal mod sald sald sald sald saldaldaldaldaldald sald sald sal mod sal modald sal mod sal mod saldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal