Researchers and practitioners increasingly consider a human-centered perspective in the design of machine learning-based applications, especially in the context of Explainable Artificial Intelligence (XAI). However, clear methodological guidance in this context is still missing because each new situation seems to require a new setup, which also creates different methodological challenges. Existing case study collections in XAI inspired us; therefore, we propose a similar collection of case studies for human-centered XAI that can provide methodological guidance or inspiration for others. We want to showcase our idea in this workshop by describing three case studies from our research. These case studies are selected to highlight how apparently small differences require a different set of methods and considerations. With this workshop contribution, we would like to engage in a discussion on how such a collection of case studies can provide a methodological guidance and critical reflection.
翻译:研究人员和从业人员在设计机器学习应用时越来越多地考虑以人为中心的观点,特别是在可解释的人工智能(XAI)方面。然而,这方面的明确方法指导仍然缺乏,因为每一个新情况似乎都需要一个新的设置,这也造成了不同的方法挑战。在XAI中现有的案例研究收集工作启发了我们;因此,我们建议为以人为中心的XAI收集类似的案例研究,为其他人提供方法指导或启发。我们想在这个研讨会上展示我们的想法,说明我们研究的三个案例研究。这些案例研究被选为强调明显微小的差异需要一套不同的方法和考虑。我们想在研讨会上讨论这种案例研究的收集工作如何提供方法指导和批判性反思。