This article explores the connection between radical isogenies and modular curves. Radical isogenies are formulas introduced by Castryck, Decru, and Vercauteren at Asiacrypt 2020, designed for the computation of chains of isogenies of fixed small degree $N.$ An important advantage of radical isogeny formulas over other formulas with a similar purpose, is that there is no need to generate a point of order $N$ that generates the kernel of the isogeny. Radical isogeny formulas were originally developed using elliptic curves in Tate normal form, while Onuki and Moriya have proposed radical isogenies formulas of degrees $3$ and $4$ on Montgomery curves. Furthermore, they attempted to obtain a simpler form of radical isogenies using enhanced elliptic and modular curves. In this article, we translate the original setup of radical isogenies (using Tate normal form) to the language of modular curves. In addition, we solve an open problem introduced by Onuki and Moriya regarding radical isogeny formulas on $X_0(N).$
翻译:本条探讨了激进异系和模块曲线之间的联系。激进异系是2020年亚洲Castryck、Decru和Vercauteren在Asiacrypt的Castryck、Decru和Vercauteren推出的公式,旨在计算固定小度异系链。美元是激进异系配方相对于具有类似目的的其他公式的一个重要优势,即没有必要产生产生产生异系内核的顺序点。激进异系配方最初是使用Tate正常形式的椭圆曲线开发的,而Onuki和Moriya在蒙哥马利曲线上提出了3美元和4美元的激进异系配方公式。此外,它们还试图利用强化的椭圆和模块曲线获得一种较简单的激进异系。在本条中,我们将原始的激进异系组合(使用Tate正常形式)翻译成模块曲线的语言。此外,我们解决了Onuki和Moriya在USX_0(N$)上就激进异系公式提出的一个公开问题。