Heterogeneous computing is one of the most important computational solutions to meet rapidly increasing demands on system performance. It typically allows the main flow of applications to be executed on a CPU while the most computationally intensive tasks are assigned to one or more accelerators, such as GPUs and FPGAs. The refactoring of systems for execution on such platforms is highly desired but also difficult to perform, mainly due the inherent increase in software complexity. After exploration, we have identified a current need for a systematic approach that supports engineers in the refactoring process -- from CPU-centric applications to software that is executed on heterogeneous platforms. In this paper, we introduce a decision framework that assists engineers in the task of refactoring software to incorporate heterogeneous platforms. It covers the software engineering lifecycle through five steps, consisting of questions to be answered in order to successfully address aspects that are relevant for the refactoring procedure. We evaluate the feasibility of the framework in two ways. First, we capture the practitioner's impressions, concerns and suggestions through a questionnaire. Then, we conduct a case study showing the step-by-step application of the framework using a computer vision application in the automotive domain.


翻译:异质计算是满足系统性能迅速增长需求的最重要计算解决方案之一,它通常允许在CPU上执行应用的主要流程,而计算最密集的任务则分配给一个或多个加速器,如GPUs和FPGAs。在这类平台上执行系统的重新设置非常可取,但主要由于软件复杂性的内在增加,也难以执行。在探索后,我们发现目前需要一种系统化的方法,支持工程师在重新构件过程中从CPU中心应用到在多元平台上执行的软件。在本文中,我们引入一个决定框架,协助工程师在重新构件软件任务中采用多式平台。它涵盖软件工程生命周期,分为五个步骤,包括要回答的问题,以便成功地解决与再构件程序有关的方面。我们从两种角度评估框架的可行性。首先,我们通过问卷调查了解从业人员的印象、关切和建议。然后,我们进行案例研究,展示在使用计算机视觉应用的域框中逐步应用。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
专知会员服务
39+阅读 · 2020年9月6日
TensorFlowLite:端侧机器学习框架
专知会员服务
32+阅读 · 2020年8月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年2月11日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
专知会员服务
39+阅读 · 2020年9月6日
TensorFlowLite:端侧机器学习框架
专知会员服务
32+阅读 · 2020年8月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员